Serveur d'exploration sur la rouille du peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements.

Identifieur interne : 000054 ( Main/Exploration ); précédent : 000053; suivant : 000055

Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements.

Auteurs : John P. Fellers [États-Unis] ; Bahram M. Soltani ; Myron Bruce ; Rob Linning ; Christina A. Cuomo ; Les J. Szabo ; Guus Bakkeren

Source :

RBID : pubmed:23356831

Descripteurs français

English descriptors

Abstract

BACKGROUND

Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust fungi (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at 88 Mb, but the reason for the expansion is unknown. Three genomic loci of Pt conserved proteins were characterized to gain insight into gene content, genome complexity and expansion.

RESULTS

A bacterial artificial chromosome (BAC) library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny) was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also found; these proteins are high in lysine and similar to multiple proteins in Pgt.

CONCLUSIONS

The three Pt loci are conserved in gene order, with a range of gene sequence divergence. Conservation of predicted haustoria expressed secreted protein genes between Pt and Pgt is extended to the more distant poplar rust, Melampsora larici-populina. The loci also reveal that genome expansion in Pt is in part due to higher occurrence of repeat-elements in this species.


DOI: 10.1186/1471-2164-14-60
PubMed: 23356831
PubMed Central: PMC3579696


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements.</title>
<author>
<name sortKey="Fellers, John P" sort="Fellers, John P" uniqKey="Fellers J" first="John P" last="Fellers">John P. Fellers</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-ARS, Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Manhattan, KS 66506, USA. john.fellers@ars.usda.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS, Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soltani, Bahram M" sort="Soltani, Bahram M" uniqKey="Soltani B" first="Bahram M" last="Soltani">Bahram M. Soltani</name>
</author>
<author>
<name sortKey="Bruce, Myron" sort="Bruce, Myron" uniqKey="Bruce M" first="Myron" last="Bruce">Myron Bruce</name>
</author>
<author>
<name sortKey="Linning, Rob" sort="Linning, Rob" uniqKey="Linning R" first="Rob" last="Linning">Rob Linning</name>
</author>
<author>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
</author>
<author>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
</author>
<author>
<name sortKey="Bakkeren, Guus" sort="Bakkeren, Guus" uniqKey="Bakkeren G" first="Guus" last="Bakkeren">Guus Bakkeren</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23356831</idno>
<idno type="pmid">23356831</idno>
<idno type="doi">10.1186/1471-2164-14-60</idno>
<idno type="pmc">PMC3579696</idno>
<idno type="wicri:Area/Main/Corpus">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000053</idno>
<idno type="wicri:Area/Main/Curation">000053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000053</idno>
<idno type="wicri:Area/Main/Exploration">000053</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements.</title>
<author>
<name sortKey="Fellers, John P" sort="Fellers, John P" uniqKey="Fellers J" first="John P" last="Fellers">John P. Fellers</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-ARS, Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Manhattan, KS 66506, USA. john.fellers@ars.usda.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-ARS, Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Manhattan, KS 66506</wicri:regionArea>
<placeName>
<region type="state">Kansas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soltani, Bahram M" sort="Soltani, Bahram M" uniqKey="Soltani B" first="Bahram M" last="Soltani">Bahram M. Soltani</name>
</author>
<author>
<name sortKey="Bruce, Myron" sort="Bruce, Myron" uniqKey="Bruce M" first="Myron" last="Bruce">Myron Bruce</name>
</author>
<author>
<name sortKey="Linning, Rob" sort="Linning, Rob" uniqKey="Linning R" first="Rob" last="Linning">Rob Linning</name>
</author>
<author>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
</author>
<author>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
</author>
<author>
<name sortKey="Bakkeren, Guus" sort="Bakkeren, Guus" uniqKey="Bakkeren G" first="Guus" last="Bakkeren">Guus Bakkeren</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Basidiomycota (genetics)</term>
<term>Basidiomycota (metabolism)</term>
<term>Chromosomes, Artificial, Bacterial (genetics)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>DNA, Fungal (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Genetic Loci (genetics)</term>
<term>Genome, Fungal (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Plant Leaves (microbiology)</term>
<term>Plant Stems (microbiology)</term>
<term>Repetitive Sequences, Nucleic Acid (genetics)</term>
<term>Synteny (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Basidiomycota (génétique)</term>
<term>Basidiomycota (métabolisme)</term>
<term>Chromosomes artificiels de bactérie (génétique)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Génome fongique (génétique)</term>
<term>Locus génétiques (génétique)</term>
<term>Mutation (MeSH)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Synténie (génétique)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquences répétées d'acides nucléiques (génétique)</term>
<term>Tiges de plante (microbiologie)</term>
<term>Triticum (microbiologie)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Basidiomycota</term>
<term>Chromosomes, Artificial, Bacterial</term>
<term>Genetic Loci</term>
<term>Genome, Fungal</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Basidiomycota</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Génome fongique</term>
<term>Locus génétiques</term>
<term>Protéines fongiques</term>
<term>Synténie</term>
<term>Séquences répétées d'acides nucléiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Tiges de plante</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Basidiomycota</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Molecular Sequence Annotation</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN fongique</term>
<term>Annotation de séquence moléculaire</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Mutation</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust fungi (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at 88 Mb, but the reason for the expansion is unknown. Three genomic loci of Pt conserved proteins were characterized to gain insight into gene content, genome complexity and expansion.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>A bacterial artificial chromosome (BAC) library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny) was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also found; these proteins are high in lysine and similar to multiple proteins in Pgt.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The three Pt loci are conserved in gene order, with a range of gene sequence divergence. Conservation of predicted haustoria expressed secreted protein genes between Pt and Pgt is extended to the more distant poplar rust, Melampsora larici-populina. The loci also reveal that genome expansion in Pt is in part due to higher occurrence of repeat-elements in this species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23356831</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
<Day>29</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements.</ArticleTitle>
<Pagination>
<MedlinePgn>60</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-60</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Wheat leaf rust (Puccinia triticina Eriks; Pt) and stem rust fungi (P. graminis f.sp. tritici; Pgt) are significant economic pathogens having similar host ranges and life cycles, but different alternate hosts. The Pt genome, currently estimated at 135 Mb, is significantly larger than Pgt, at 88 Mb, but the reason for the expansion is unknown. Three genomic loci of Pt conserved proteins were characterized to gain insight into gene content, genome complexity and expansion.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">A bacterial artificial chromosome (BAC) library was made from P. triticina race 1, BBBD and probed with Pt homologs of genes encoding two predicted Pgt secreted effectors and a DNA marker mapping to a region of avirulence. Three BACs, 103 Kb, 112 Kb, and 166 Kb, were sequenced, assembled, and open reading frames were identified. Orthologous genes were identified in Pgt and local conservation of gene order (microsynteny) was observed. Pairwise protein identities ranged from 26 to 99%. One Pt BAC, containing a RAD18 ortholog, shares syntenic regions with two Pgt scaffolds, which could represent both haplotypes of Pgt. Gene sequence is diverged between the species as well as within the two haplotypes. In all three BAC clones, gene order is locally conserved, however, gene shuffling has occurred relative to Pgt. These regions are further diverged by differing insertion loci of LTR-retrotransposon, Gypsy, Copia, Mutator, and Harbinger mobile elements. Uncharacterized Pt open reading frames were also found; these proteins are high in lysine and similar to multiple proteins in Pgt.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The three Pt loci are conserved in gene order, with a range of gene sequence divergence. Conservation of predicted haustoria expressed secreted protein genes between Pt and Pgt is extended to the more distant poplar rust, Melampsora larici-populina. The loci also reveal that genome expansion in Pt is in part due to higher occurrence of repeat-elements in this species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fellers</LastName>
<ForeName>John P</ForeName>
<Initials>JP</Initials>
<AffiliationInfo>
<Affiliation>USDA-ARS, Hard Winter Wheat Genetics Research Unit, Department of Plant Pathology, Manhattan, KS 66506, USA. john.fellers@ars.usda.gov</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Soltani</LastName>
<ForeName>Bahram M</ForeName>
<Initials>BM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bruce</LastName>
<ForeName>Myron</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Linning</LastName>
<ForeName>Rob</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cuomo</LastName>
<ForeName>Christina A</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Szabo</LastName>
<ForeName>Les J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bakkeren</LastName>
<ForeName>Guus</ForeName>
<Initials>G</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>01</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="Y">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056426" MajorTopicYN="N">Genetic Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016681" MajorTopicYN="N">Genome, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>1</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23356831</ArticleId>
<ArticleId IdType="pii">1471-2164-14-60</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-60</ArticleId>
<ArticleId IdType="pmc">PMC3579696</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 May;14(5):671-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11332731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2007 Jul;8(4):451-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Jan;9(1):59-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18705884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Apr 21;434(7036):980-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15846337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Dec;99(12):1355-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19900001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1546-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2012 Apr;49(4):271-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):243-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):420-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20471307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14676-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21873196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2007 Sep;97(9):1141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Mar 18;464(7287):367-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20237561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 May;100(5):432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20373963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Oct;50(1):231-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14507377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Apr;100(4):376-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20205541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Sep 7;317(5843):1400-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17823352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Jun;44(6):474-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17412619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8888-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jan;24(1):353-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22294617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Jan;42(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 May 31;108(22):9166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21536894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2000 Aug;90(8):819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Mar;48(3):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Apr;60(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(4):e34728</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2009 Jun;99(6):750-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19453235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 10;330(6010):1543-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 2;444(7115):97-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080091</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kansas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bakkeren, Guus" sort="Bakkeren, Guus" uniqKey="Bakkeren G" first="Guus" last="Bakkeren">Guus Bakkeren</name>
<name sortKey="Bruce, Myron" sort="Bruce, Myron" uniqKey="Bruce M" first="Myron" last="Bruce">Myron Bruce</name>
<name sortKey="Cuomo, Christina A" sort="Cuomo, Christina A" uniqKey="Cuomo C" first="Christina A" last="Cuomo">Christina A. Cuomo</name>
<name sortKey="Linning, Rob" sort="Linning, Rob" uniqKey="Linning R" first="Rob" last="Linning">Rob Linning</name>
<name sortKey="Soltani, Bahram M" sort="Soltani, Bahram M" uniqKey="Soltani B" first="Bahram M" last="Soltani">Bahram M. Soltani</name>
<name sortKey="Szabo, Les J" sort="Szabo, Les J" uniqKey="Szabo L" first="Les J" last="Szabo">Les J. Szabo</name>
</noCountry>
<country name="États-Unis">
<region name="Kansas">
<name sortKey="Fellers, John P" sort="Fellers, John P" uniqKey="Fellers J" first="John P" last="Fellers">John P. Fellers</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarRustV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000054 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000054 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarRustV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23356831
   |texte=   Conserved loci of leaf and stem rust fungi of wheat share synteny interrupted by lineage-specific influx of repeat elements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23356831" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarRustV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 27 22:23:40 2020. Site generation: Sun Jan 31 22:19:43 2021